ความหมายของฟังก์ชัน
ฟังก์ชัน คือ ความสัมพันธ์ซึ่งในสองคู่อันดับใดๆ ของความสัมพันธ์นั้น ถ้าสมาชิกตัวหน้าเหมือนกันแล้ว สมาชิกตัวหลังต้องไม่ต่างกัน | |||
| |||
หลักในการพิจารณาว่าความสัมพันธ์เป็นฟังก์ชันหรือไม่ | |||
1. ถ้าความสัมพันธ์นั้นอยู่ในรูปแจกแจงสมาชิก ให้ดูว่าสมาชิกตัวหน้าของคู่อันดับซ้ำกันหรือไม่ ถ้าสมาชิกตัวหน้าของคู่อันดับซ้ำกัน แสดงว่าความสัมพันธ์นั้นไม่เป็นฟังก์ชัน | |||
2. ถ้าความสัมพันธ์นั้นอยู่ในรูปของการกำหนดเงื่อนไขสมาชิก r = {(x,y) ∈ A× B | P(x,y) } ให้แทนค่าแต่ละสมาชิกของ x ลงในเงื่อนไข P(x,y) เพื่อหาค่า y ถ้ามี x ตัวใดที่ให้ค่า y มากกว่า 1 ค่า แสดงว่าความสัมพันธ์นั้นไม่เป็นฟังก์ชัน | |||
3. พิจารณาจากกราฟของความสัมพันธ์ โดยการลากเส้นตรงขนานกับแกน y ถ้าเส้นตรงดังกล่าวตัดกราฟของความสัมพันธ์มากกว่า 1 จุด แสดงว่าความสัมพันธ์นั้นไม่เป็นฟังก์ชัน |
ชนิดของฟังก์ชัน
• ฟังก์ชันจาก A ไป B | ||
f เป็นฟังก์ชันจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนคือเซต A และเรนจ์เป็นสับเซตของเซต B เขียนแทนด้วย f : A → B | ||
• ฟังก์ชันจาก A ไปทั่วถึง B | ||
f เป็นฟังก์ชันจาก A ไปทั่วถึง B ก็ต่อเมื่อ f เป็นฟังก์ชันที่มีโดเมนเป็นเซต A และเรนจ์เป็นของเซต B เขียนแทนด้วย f : A | ||
• ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B | ||
f เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B ก็ต่อเมื่อ f เป็นฟังก์ชันจาก A ไป B ซึ่งถ้า y ∈ R f แล้วมี x ∈ Df เพียงตัวเดียวเท่านั้นที่ทำให้ (x,y) ∈ f เขียนแทนด้วย f : หรืออาจกล่าวอย่างง่ายๆได้ว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง ก็ต่อเมื่อสำหรับ x1และ x2 ในโดเมน ถ้า f( x1) = f( x2) แล้ว x1 = x2 | ||
• ฟังก์ชันเพิ่ม ฟังก์ชันลด | ||
ให้ f เป็นฟังก์ชันจากสับเซตของ R× R และ A ⊂ Df | ||
♦ f เป็นฟังก์ชันเพิ่มใน A ก็ต่อเมื่อ สำหรับสมาชิก x1 และ x2 ใดๆ ใน A | ||
| ||
♦ f เป็นฟังก์ชันลดใน A ก็ต่อเมื่อ สำหรับสมาชิก x1 และ x2 ใดๆ ใน A | ||
|
• ฟังก์ชันเชิงเส้น (linear function) | |||||||||
กราฟของฟังก์ชันเชิงเส้นจะมีลักษณะเป็นเส้นตรง | |||||||||
| |||||||||
• ฟังก์ชันขั้นบันได (step function) | |||||||||
กราฟของฟังก์ชันนี้จะมีรูปร่างคล้ายขั้นบันได | |||||||||
• ฟังก์ชันกำลังสอง (quadratic function) | |||||||||
กราฟของฟังก์ชันกำลังสองจะมีลักษณะเป็นรูปพาราโบลา | |||||||||
• ฟังก์ชันพหุนาม (polynomial function) | |||||||||
• ฟังก์ชันตรรกยะ (rational function) | |||||||||
• ฟังก์ชันที่เป็นคาบ (periodic function) | |||||||||
f เป็นฟังก์ชันที่เป็นคาบ ก็ต่อเมื่อ มีำจำนวนจริง p ที่ทำให้ f(x+p) = f(x) สำหรับ ทุกค่าของ x และ x+p ที่อยู่ในโดเมนของ f |
ไม่มีความคิดเห็น:
แสดงความคิดเห็น